







# SUPRAMOLECULAR ORGANIC SEMICONDUCTING MATERIALS FOR OPTOELECTRONICS

**Acronim: SUPRAMOL-MAT** 

Scientific Report STAGE 2 / 2023

Code project: PN-III-P4-PCE-2021-0906

PCE 120 din 14/06/2022

#### PROJECT MANAGER

Dr. Aurica Farcas

### **TEAM MEMBERS**

- 1. Dr. Ana-Maria Resmerita
- 2. Dr. Ursu Laura-Elena
- 3. Dr. Balan-Porcărașu Mihaela
- 4. Dr. Asăndulesa Mihai
- 5. Dr. Tigoianu Ionut Radu
- 6. Dr. Peptu Cristian

# **Objectives**

We propose here the following two main objectives followed by seven main activities:

- **O2**. The synthesis of pseudo- and polyrotaxanes architectures based on poly(3,4-ethylenedioxythiophene) (PEDOT) and permodified or native cyclodextrines;
- **O3**. The synthesis of the reference poly(fluorene-thiophene-phenylene-azomethine) (PFTPA) alternating copolymer.
- (A1) Synthesis of PEDOT-TMeβCD, PEDOT-TMeγCD, PEDOT-βCD and PEDOT-γCD and their physical characterizations;
- (A2) Exploring interactions of their soluble fractions in water with aerolysin nanopore;
- (A3) Evaluation of PEDOT-TMeβCD, PEDOT-TMeγCD, PEDOT-βCD and PEDOT-γCD photophysical properties;
- (A4) Electrochemical properties of PEDOT-TMeβCD, PEDOT-TMeγCD, PEDOT-βCD and PEDOT-γCD;
- (A5) The photovoltaic performance of the devices based on PEDOT-TMeβCD and PEDOT-TMeγCD;
- (A6) Electrical properties of PEDOT-TMeβCD, PEDOT-TMeγCD, PEDOT-βCD and PEDOT-γCD;
- (A7) The synthesis of the thiophene-phenylene-azomethine (TPA) comonomer and its chemical characterization.

## **O2 - 2023**

The synthesis of pseudo- and polyrotaxanes architectures based on poly(3,4-ethylenedioxythiophene) (PEDOT) and permodified or native cyclodextrins

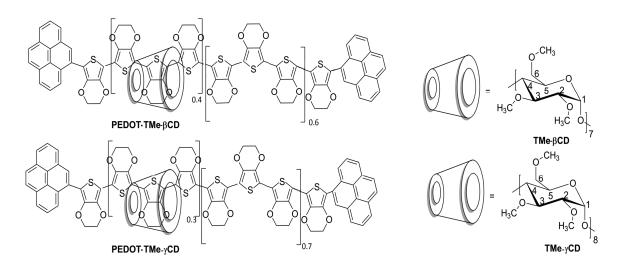



FIGURE 1. Chemical structures of PEDOT·TMe-βCD and PEDOT·TMe-γCD

# <u>O3 - 2023</u>

The synthesis of the thiophene-phenylene-azomethine (TPA) comonomer and its chemical characterization

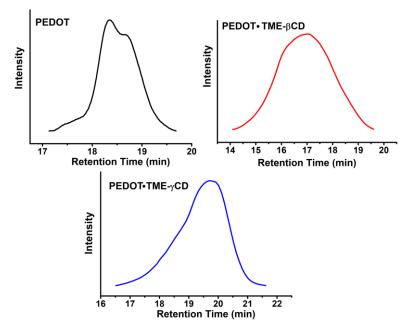

$$Br - C - N - C - N - Br$$

FIGURE 2. Chemical structure of TPA comonomer

(A1) Synthesis of PEDOT-TMe $\beta$ CD, PEDOT-TMe $\gamma$ CD, PEDOT- $\beta$ CD and PEDOT- $\gamma$ CD and their chemical characterizations

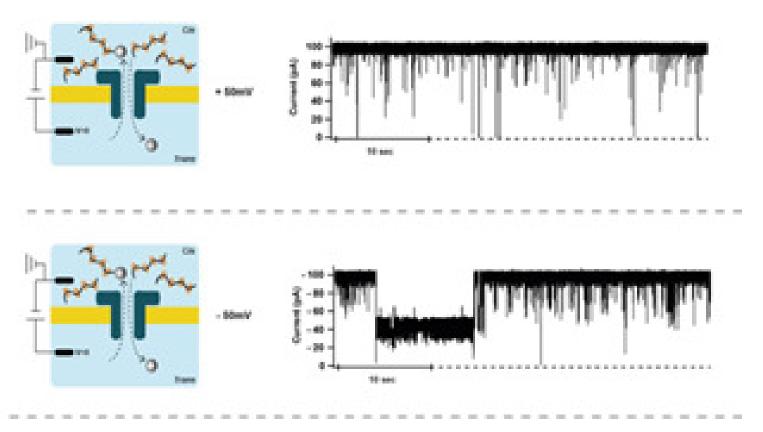
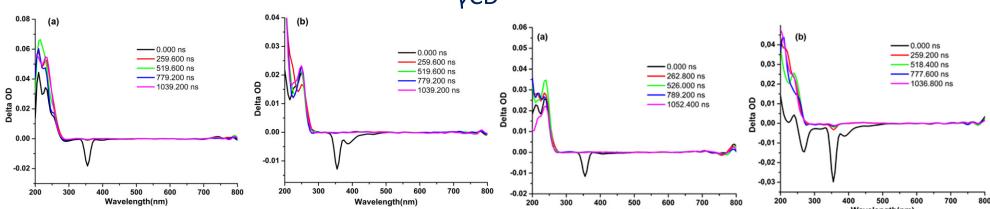



FIGURE 3. 1H-NMR spectra of PEDOT·TMe-βCD (left) and PEDOT·TMe-γCD (right).

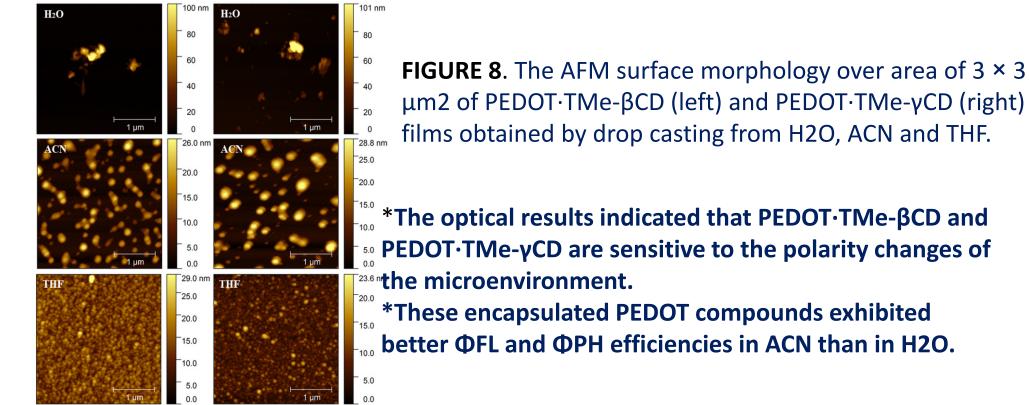


**FIGURE 4**. Comparison between the chromatograms of PEDOT, PEDOT·TMe-βCD and PEDOT·TMe-γCD.


(A2) Exploring interactions of their soluble fractions in water with aerolysin (AeL) nanopore

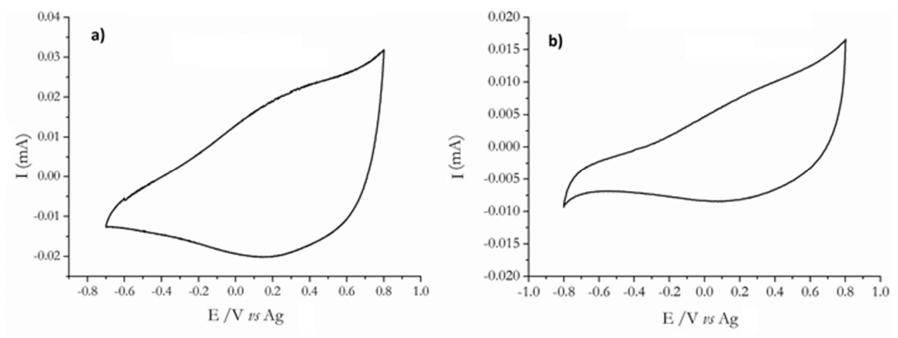


**FIGURE 5**. Electrical detection of PEDOT·TMe-βCD PR using the AeL nanopore. Illustration of the experimental setup used for the analysis of the PEDOT·CB7-PPs molecules added in the cis compartment in the presence of an Ael nanopore inserted in a lipid bilayer. Portions of a typical current traces recorded in the presence of 0.6 mM PEDOT·TMe-βCD PR molecules under positive + 50 mV (a) and negative -50 mV (b) trans applied voltage.


Our results demonstrate the real-time detection and high binding ability at negative voltage of PEDOT·TMe-βCD compounds to the pore lumen of Ael at a single molecule level.

(A3) Photophysical properties of PEDOT-TMeβCD, PEDOT-TMeγCD, PEDOT-βCD and PEDOT-




**FIGURE 6**. Nanosecond transient absorption of PEDOT·TMe- $\beta$ CD in H2O ( $\lambda$ ex = 375 nm) (a) and ACN ( $\lambda$ ex = 355 nm) (b).

**FIGURE 7**. Nanosecond transient absorption of PEDOT·TMe- $\gamma$ CD in H2O ( $\lambda$ ex = 375 nm) (a) and ACN ( $\lambda$ ex = 355 nm) (b)



(A4) Electrochemical properties of PEDOT-TMe $\beta$ CD, PEDOT-TMe $\gamma$ CD, PEDOT- $\beta$ CD and PEDOT- $\gamma$ CD

Cyclic voltammograms of PEDOT·TMe-βCD and PEDOT·TMe-γCD



**FIGURE 9**. CV of PEDOT·TMe-βCD (a) and PEDOT·TMe-γCD (b) in 0.1 M TBACIO4)/ACN solution at scan rate 20 mV·s-1.

Accordingly to the electrochemical results, it can be conclude that the investigated PEDOT·TMe-βCD and PEDOT·TMe-γCD exhibit typical insulating behavior in a wide range of potential between n- and p-doping processes, denoting their semi-conducting properties.

### (A5) Preliminarily photovoltaic results of PEDOT-TMeβCD and PEDOT-TMeγCD

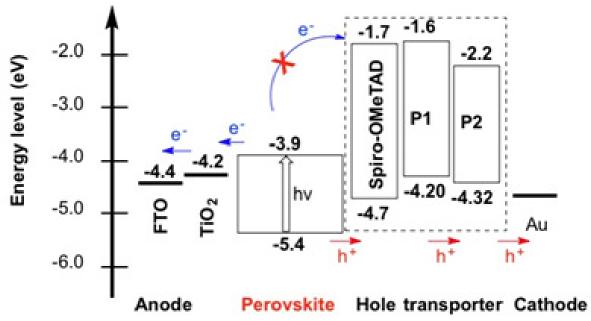
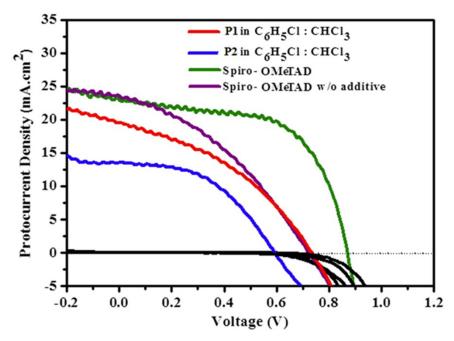
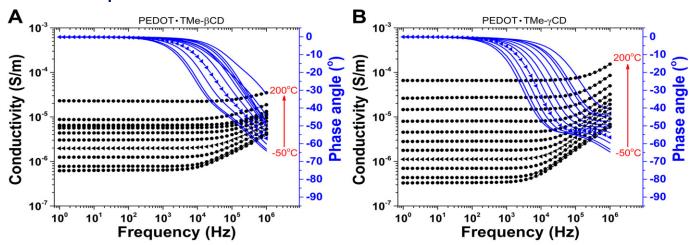
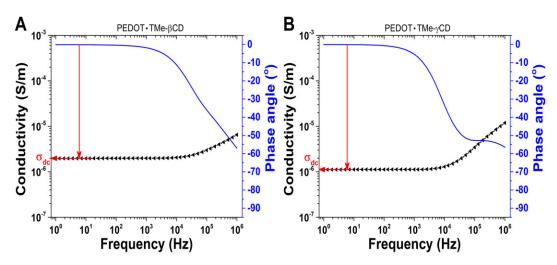




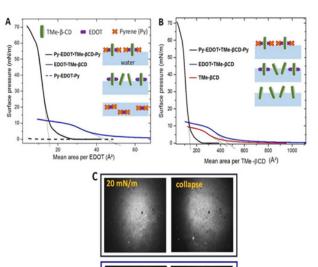

FIGURE 10. Energy level alignment of different device components




**FIGURE 11**. J-V curves of P1 (PEDOT·TMeβCD-red) and P2 (PEDOT·TMeγCD-blue).

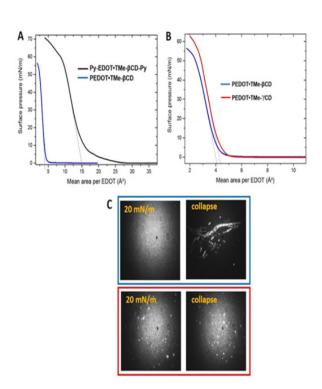
(A6) Electrical properties of PEDOT-TMe $\beta$ CD, PEDOT-TMe $\gamma$ CD, PEDOT- $\beta$ CD and PEDOT- $\gamma$ CD




**FIGURE 12**. The variation of  $\sigma$  and  $\theta$  with f at different temperatures for PEDOT·TMe- $\beta$ CD (A) and PEDOT·TMe- $\gamma$ CD (B). Particularly for the temperature of 25 oC, the dielectric spectra are repre-sented with solid triangle-type symbols.

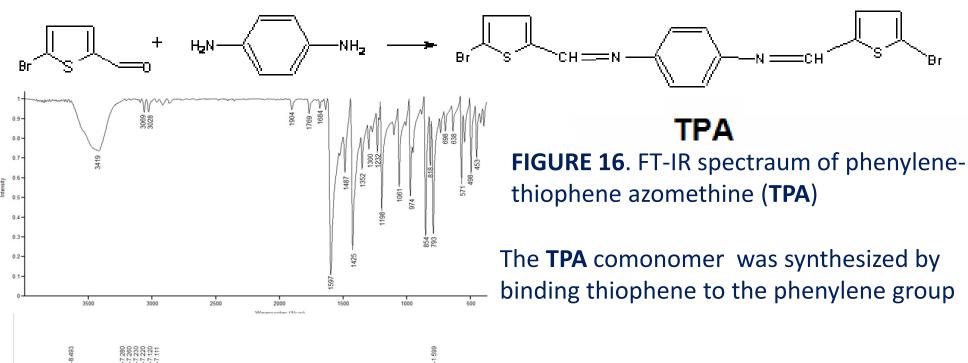


**FIGURE 13**. The  $\sigma$ DC evaluation from the spectrum of PEDOT·TMe- $\beta$ CD (A) and PEDOT·TMe- $\gamma$ CD (B) at 25 oC. The horizontal arrow illustrates the plateau region of the measured  $\sigma$ , while the vertical arrow shows the maximum value of the  $\theta$ .


The lowest Ea value of PEDOT·TMe-βCD reveals its better transport of electrons between active sites than those of PEDOT·TMe-γCD.

### 2D supramolecular organizations at the air-water interface




**FIGURE** 14 Surface pressure-area isotherms for Langmuir films of Py-EDOT·TMe-βCD-Py, EDOT·TMe-βCD and Py-EDOT-Py; (B) Py-TMe-βCD-Py, EDOT·TMe-βCD, and TMe- $\beta$ CD; (C) **BAM** images (600  $\mu$ m  $\times$  600 of μm) Py-EDOT·TMe-βCD-Py EDOT·TMe-βCD.

The obtained results strongly suggest that the presence of TMe-CDs on the PEDOT backbones as well the presence of Py ends plays an important role in the supramolecular arrangements of PEDOT·TMe-βCD and PEDOT·TMe-γCD layers.



**FIGURE 15**. Surface pressure-area isotherms presented as a function of the mean area per EDOT monomer for: A) Py-EDOT·TMe- $\beta$ CD-Py and PEDOT·TMe- $\beta$ CD; B) PEDOT·TMe- $\beta$ CD and PEDOT·TMe- $\gamma$ CD and C) BAM images (600 μm x 600 μm) of PEDOT·TMe- $\beta$ CD and PEDOT·TMe- $\beta$ CD and PEDOT·TMey-CD Langmuir films in the condensed phase and at the collapse.

# (A7) The synthesis and characterization of novel phenylene-thiophene based $\pi$ -conjugated azomethine (TPA) and its supramolecular complex with permodified $\beta$ -cyclodextrin





**FIGURE 17**. 1H-NMR spectrum of phenylene-thiophene azomethine (**TPA**)

### **Dissemination - 2023**

### **Published papers in ISI journal**

- **1**. A. Farcas, H. Ouldali, C. Cojocaru, M. Pastoriza-Gallego, A.-M. Resmerita, A. Oukhaled Structural characteristics and the label-free detection of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) pseudorotaxane at single molecule level, Nano
- Research, 16, 2728-2737 (2023)
- **2**. A. Farcas, A.- M. Resmerita, M. Balan-Porcarasu, C. Cojocaru, C. Peptu, I. Sava Inclusion complexes of 3,4-ethylenedioxythiophene with permodified  $\beta$  and  $\gamma$ -cyclodextrins , Molecules, 28, 3404/1-11 (2023)
- **3**. A. Farcas, M. Damoc, M. Asandulesa, P.-H. Aubert, R. I. Tigoianu, E. L. Ursu The straightforward approach of tuning the photoluminescence and electrical properties of encapsulated PEDOT end-capped by pyrene, Journal of Molecular Liquids, 376, 121461/1-10 (2023)
- **4.** A. El Haitami, A.-M. Resmerita, L. E. Ursu, M. Asandulesa, S. Cantin, A.Farcas

  Novel insight into the photophysical properties and 2D supramolecular organization of poly(3,4-ethylenedioxythiophene)/permodified cyclodextrins polyrotaxanes at the air water interface,

  Materials, 16, 4447/1-39 (2023)

- 5. A.-M. Resmerita, A. Bargan, C. Cojocaru, A. Farcas
- Synthesis, properties and adsorption kinetic study of new crosslinked composite materials based on polyethylene glycol/polyrotaxane and polyisoprene/semi-rotaxane, Materials, 16, 5594/1-15 (2023)
- 6. M. Asandulesa, A.-M. Resmerita, A. Farcas

Electrical properties of poly(3,4-ethylenedioxithiophene) threaded by cucurbit[7]uril Proceedings SPIE, 12493(Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies XI), 1249304/1-5 (2023)

### **International conferences**

- 1. A. Farcas, Q. Abdelghani, A.-M. Resmerita
- Cucurbit[7]uril-threaded poly(3,4-ethylenedioxythiophene): A novel processable conjugated pseudopolyrotaxane and polyrotaxane
- Advanced Polymers via Macromolecular Engineering (APME2023), 23-27.04.2023, Paris-France
- 2. A. Farcas, A.-M. Resmerita
- Supramolecular organization of poly(3,4-ethylenedioxythiophene)/permodified cyclodextrins polyrotaxanes on the 2D Materials
- The 7th European Cyclodextrin Conference (EuroCD2023), 05-08.09.2023, Budapest-Hungary
- 3. A.-M. Resemerita, A. Farcas
- Freestanding composites material films obtained by cross-linking of polyethylene glycol polyrotaxane and polyisoprene/semi-rotaxane with 2-hydroxypropyl-β-cyclodextrins
  The 7th European Cyclodextrin Conference (EuroCD2023), 05-08.09.2023, Budapest-Hungary

### 5. A. Farcas

Supramolecular Semiconductor Materials for Organic Electronics INTERNATIONAL SUMMIT ON POWER AND ENERGY ENGINEERING (ISPEE2023), 23-25.11.2023, Lisabona, Portugalia

6. M. Balan-Porcarasu, A. Farcas

INSIGHTS INTO THE INCLUSION COMPLEXATION OF 3,4-ETHYLENEDIOXYTHIOPHENE WITH PERMODIFIED CYCLODEXTRINS IN AQUEOUS SOLUTION

Progress in organic and macromolecular compounds 29th edition, 04.-06.10.2023, Iasi, Romania

### **Poster at international conferences**

1. I. R. Tigoianu, A. Farcas

Photophysical properties of poly(3,4-ethylenedioxythiophene)/permethylated  $\beta$ - and  $\gamma$ -cyclodextrin polyrotaxanes

10th International Electronic Conference on Sensors and Applications (sciforum-074311), 15.11.2023 (online)

2. M. Asandulesa, A.-M. Resmerita, A. Farcas

ELECTRICAL PROPERTIES OF POLY(3,4-ETHYLENEDIOXYTHIOPHENE)/PERMODIFIED CYCLODEXTRINS POLYROTAXANES END-CAPPED BY PYRENE

Materials, Methods & Technologies 2023, 25th International Conference, 17-20.08.2023, Burgas-Bulgaria

3. B. Hajduk, A. Farcas, P. Jarka, H. Janeczek

Thermal properties of soluble poly(3,4 ethylenedioxythiophene/cucurbit[7]uril) polypseudorotaxane and polyrotaxane

Polskie Towarzystwo Kalorymetrii, 15-16.02.2023, Gdańsk, Politechnika Gdańska Wydział Chemiczny, Poland

### **Other**

**1.** A. Farcas - Program Committee, KEYNOTE and Plenary SPEAKER at the International Summit on Power and Energy Engineering (ISPEE2023), 23-25.11. 2023, Lisbon, Portugal